Aim: Hollow-fiber-based supported liquid membrane was modified utilizing nanostructures such as graphite, graphene oxide or nitrogen-doped graphene oxide, for electro-membrane extraction (EME) of imatinib and sunitinib from biological fluids. By applying these conductive nanostructures, a low-voltage EME device (6.0 V) was fabricated. Materials & methods: A response surface methodology through central composite design was used to evaluate and optimize effects of various essential factors that influence on normalized recovery. Results: Optimal extraction conditions were set as, 1-octanol with 0.01 % (w/v) graphene oxide functioning as the supported liquid membrane, an extraction time of 17.0 min, pH of the acceptor and the donor phase of 2.8 and 7.9, respectively. Conclusion: The method was successfully applied to quantify imatinib and sunitinib in biological fluids.
Keywords:
- biological fluids
- carbon nanostructure materials
- electro-membrane extraction
- imatinib
- sunitinib